Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612465

RESUMO

Ulcerative colitis (UC) is a relapsing and reoccurring inflammatory bowel disease. The treatment effect of Alhagi maurorum and stem cell extracts on UC remains unclear. The aim of the present study was to investigate the protective role of Alhagi maurorum combined with stem cell extract on the intestinal mucosal barrier in an intestinal inflammation mouse model. Sixty mice were randomly divided into a control group, model group, Alhagi group, MSC group, and MSC/Alhagi group. MSC and Alhagi extract were found to reduce the disease activity index (DAI) scores in mice with colitis, alleviate weight loss, improve intestinal inflammation in mice (p < 0.05), preserve the integrity of the ileal wall and increase the number of goblet cells and mucin in colon tissues. Little inflammatory cell infiltration was observed in the Alhagi, MSC, or MSC/Alhagi groups, and the degree of inflammation was significantly alleviated compared with that in the model group. The distribution of PCNA and TNF-alpha in the colonic tissues of the model group was more disperse than that in the normal group (p < 0.05), and the fluorescence intensity was lower. After MSC/Alhagi intervention, PCNA and TNF-alpha were distributed along the cellular membrane in the MSC/Alhagi group (p < 0.05). Compared with that in the normal control group, the intensity was slightly reduced, but it was still stronger than that in the model group. In conclusion, MSC/Alhagi can alleviate inflammatory reactions in mouse colonic tissue, possibly by strengthening the protective effect of the intestinal mucosal barrier.


Assuntos
Colite Ulcerativa , Fabaceae , Células-Tronco Mesenquimais , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Fator de Células-Tronco , Antígeno Nuclear de Célula em Proliferação , Fator de Necrose Tumoral alfa , Inflamação , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Theriogenology ; 215: 321-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128225

RESUMO

The transcription factor promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16) is critical for the self-renewal of spermatogonial stem cells (SSCs). However, the function of PLZF in SSCs is not clear. Here, we found that PLZF acted as an epigenetic regulator of stem cell maintenance and self-renewal of germ cells. The PLZF protein interacts with the ten-eleven translocation 1 (TET1) protein and subsequently acts as a modulator to regulate the expression of self-renewal-related genes. Furthermore, Transcription Factor 7-like 2 (TCF7L2) is promoted by the coordination of PLZF and Tri-methylation of lysine 4 on histone H3 (H3K4me3). In addition, testicular single-cell sequencing indicated that TCF7L2 is commonly expressed in the PLZF cluster. We demonstrated that PLZF directly targets TCF7L2 and alters the landscape of histone methylation in the SSCs nucleus. Meanwhile, the RD domain and Zn finger domain of PLZF synergize with H3K4me3 and directly upregulate TCF7L2 expression at the transcriptional level. Additionally, we identified a new association between PLZF and the histone methyltransferase EZH2 at the genomic level. Our study identified a new association between PLZF and H3K4me3, established the novel PLZF&TET1-H3K4me3-TCF7L2 axis at the genomic level which regulates undifferentiated spermatogonia, and provided a platform for studying germ cell development in male domestic animals.


Assuntos
Fatores de Transcrição Kruppel-Like , Espermatogônias , Masculino , Animais , Espermatogônias/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Testículo/metabolismo , Fatores de Transcrição/metabolismo
3.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240027

RESUMO

The existing treatment modalities for skin injuries mainly include dressings, negative-pressure wound treatment, autologous skin grafting, and high-pressure wound treatment. All of these therapies have limitations such as high time cost, the inability to remove inactivated tissue in a timely manner, surgical debridement, and oxygen toxicity. Mesenchymal stem cells have a unique self-renewal ability and wide differentiation potential, and they are one of the most promising stem cell types in cell therapy and have great application prospects in the field of regenerative medicine. Collagen exerts structural roles by promoting the molecular structure, shape, and mechanical properties of cells, and adding it to cell cultures can also promote cell proliferation and shorten the cell doubling time. The effects of collagen on MSCs were examined using Giemsa staining, EdU staining, and growth curves. Mice were subjected to allogeneic experiments and autologous experiments to reduce individual differences; all animals were separated into four groups. Neonatal skin sections were detected by HE staining, Masson staining, immunohistochemical staining, and immunofluorescence staining. We found that the MSCs pretreated with collagen accelerated the healing of skin wounds in mice and canines by promoting epidermal layer repair, collagen deposition, hair follicle angiogenesis, and an inflammatory response. Collagen promotes the secretion of the chemokines and growth factors associated with skin healing by MSCs, which positively influences skin healing. This study supports the treatment of skin injuries with MSCs cultured in medium with collagen added.


Assuntos
Células-Tronco Mesenquimais , Cicatrização , Camundongos , Animais , Cães , Cicatrização/fisiologia , Pele/lesões , Colágeno , Proliferação de Células
4.
Zool Res ; 44(3): 505-521, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37070575

RESUMO

Bacterial or viral infections, such as Brucella, mumps virus, herpes simplex virus, and Zika virus, destroy immune homeostasis of the testes, leading to spermatogenesis disorder and infertility. Of note, recent research shows that SARS-CoV-2 can infect male gonads and destroy Sertoli and Leydig cells, leading to male reproductive dysfunction. Due to the many side effects associated with antibiotic therapy, finding alternative treatments for inflammatory injury remains critical. Here, we found that Dmrt1 plays an important role in regulating testicular immune homeostasis. Knockdown of Dmrt1 in male mice inhibited spermatogenesis with a broad inflammatory response in seminiferous tubules and led to the loss of spermatogenic epithelial cells. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that Dmrt1 positively regulated the expression of Spry1, an inhibitory protein of the receptor tyrosine kinase (RTK) signaling pathway. Furthermore, immunoprecipitation-mass spectrometry (IP-MS) and co-immunoprecipitation (Co-IP) analysis indicated that SPRY1 binds to nuclear factor kappa B1 (NF-κB1) to prevent nuclear translocation of p65, inhibit activation of NF-κB signaling, prevent excessive inflammatory reaction in the testis, and protect the integrity of the blood-testis barrier. In view of this newly identified Dmrt1- Spry1-NF-κB axis mechanism in the regulation of testicular immune homeostasis, our study opens new avenues for the prevention and treatment of male reproductive diseases in humans and livestock.


Assuntos
Fertilidade , Homeostase , NF-kappa B , Testículo , NF-kappa B/metabolismo , Fertilidade/genética , Fertilidade/imunologia , Humanos , Masculino , Testículo/imunologia , Testículo/metabolismo , Homeostase/imunologia , Animais , Camundongos , Células HEK293 , Espermatogênese , Inflamação , Regiões Promotoras Genéticas/genética , Ativação Transcricional , Técnicas de Silenciamento de Genes
5.
Stem Cell Res Ther ; 13(1): 379, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902973

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a complex disease and can be generally divided into prerenal, intrarenal, and postrenal AKI (PR-AKI). Previous studies have shown that mesenchymal stem cells (MSCs)-derived extracellular vesicles have protective function on prerenal and intrarenal AKI treatment, but whether they have therapeutic efficacy on PR-AKI remains unclear. In this study, we investigated the therapeutic efficacy of allogeneic adipose mesenchymal stem cell-derived extracellular vesicles (ADMSCEVs) on cat models of PR-AKI. METHODS: The cat models of PR-AKI were established by using artificial urinary occlusion and then treated with ADMSCEVs. Histopathological section analysis, blood routine analysis, plasma biochemical test, imaging analysis, and plasma ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) were performed to evaluate the therapeutic efficacy of ADMSCEVs. RESULTS: Physiological and biochemical test showed that the ADMSCEVs could recover creatinine, urea nitrogen and plasma phosphorus to homeostasis efficiently. Blood routine analysis showed that leukocytes in PR-AKI cats with ADMSCEVs treatment returned to normal physiological range more quickly than that of control. UHPLC-MS/MS analysis revealed that the plasma metabolome profile of PR-AKI cats treated with ADMSCEVs was highly similar to that of normal cats. Furthermore, UHPLC-MS/MS analysis also revealed six metabolites (carnitine, melibiose, D-Glucosamine, cytidine, dihydroorotic acid, stachyose) in plasma were highly correlated with the dynamic process of PR-AKI on cats. CONCLUSIONS: We demonstrate the efficacy of ADMSCEVs in the treatment of PR-AKI on cats. Our study also suggests six metabolites to be novel PR-AKI markers and to be potential targets for ADMSCEVs therapy. Our findings will be useful to improve clinical treatment of both animal and human PR-AKI patients with ADMSCEVs in the future.


Assuntos
Injúria Renal Aguda , Vesículas Extracelulares , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Animais , Vesículas Extracelulares/patologia , Humanos , Rim/patologia , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/patologia , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806144

RESUMO

Ferroptosis is a relatively novel form of regulated cell death that was discovered in 2012. With the increasing research related to the mechanisms of ferroptosis, previous studies have demonstrated that the inactive of the intracellular antioxidant system and iron overload can result in the accumulation of reactive oxygen species (ROS), which can ultimately cause lipid peroxidation in the various cell types of the body. ROS accumulation can cause sperm damage by attacking the plasma membrane and damaging DNA. Acute ferroptosis causes oxidative damage to sperm DNA and testicular oxidative stress, thereby causing male reproductive dysfunction. This review aims to discuss the metabolic network of ferroptosis, summarize and analyze the relationship between male reproductive diseases caused by iron overload as well as lipid peroxidation, and provide a novel direction for the research and prevention of various male reproductive diseases.


Assuntos
Ferroptose , Sobrecarga de Ferro , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Sêmen/metabolismo
7.
Stem Cell Res Ther ; 13(1): 164, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414044

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro passaging leads to stemness loss of MSCs, resulting in failure of MSC therapy. This study investigated whether the combination of melatonin and human umbilical cord mesenchymal stem cells (hUC-MSCs) was superior to hUC-MSCs alone in ameliorating high-fat diet and streptozocin (STZ)-induced type II diabetes mellitus (T2DM) in a mouse model. METHODS: Mice were divided into four groups: normal control (NC) group; T2DM group; hUC-MSCs treatment alone (UCMSC) group and pretreatment of hUC-MSCs with melatonin (UCMSC/Mel) group. RESULTS: RNA sequence analysis showed that certain pathways, including the signaling pathway involved in the regulation of cell proliferation signaling pathway, were regulated by melatonin. The blood glucose levels of the mice in the UCMSC and UCMSC/Mel treatment groups were significantly reduced compared with the T2DM group without treatment (P < 0.05). Furthermore, hUC-MSCs enhance the key factor in the activation of the PI3K/Akt pathway in T2DM mouse hepatocytes. CONCLUSION: The pretreatment of hUC-MSCs with melatonin partly boosted cell efficiency and thereby alleviated impaired glycemic control and insulin resistance. This study provides a practical strategy to improve the application of hUC-MSCs in diabetes mellitus and cytotherapy. Overview of the PI3K/AKT signaling pathway. (A) Underlying mechanism of UCMSC/Mel inhibition of hyperglycemia and insulin resistance T2DM mice via regulation of PI3K/AKT pathway. hUC-MSCs stimulates glucose uptake and improves insulin action thus should inhibition the clinical signs of T2DM, through activation of the p-PI3K/Akt signaling pathway and then regulates glucose transport through activating AS160. UCMSC/Mel increases p53-dependent expression of BCL2, and inhibit BAX and Capase3 protein activation. Leading to the decrease in apoptosis. (B) Melatonin modulated PI3K/AKT signaling pathway. Melatonin activated PI3K/AKT response pathway through binding to MT1and MT2 receptor. Leading to the increase in hUC-MSCs proliferation, migration and differentiation. → (Direct stimulatory modification); ┴ ( Direct Inhibitory modification); → ┤ (Multistep inhibitory modification); ↑ (Up regulate); ↓ (Down regulate); PI3K (Phosphoinositide 3-Kinase); AKT ( protein kinase B); PDK1 (Phosphoinositide-dependent protein kinase 1); IR, insulin receptor; GLUT4 ( glucose transporter type 4); ROS (reactive oxygen species); BCL-2 (B-cell lymphoma-2); PDK1 (phosphoinositide-dependent kinase 1) BAX (B-cell lymphoma-2-associated X protein); PCNA (Proliferating cell nuclear antigen); Cell cycle-associated proteins (KI67, cyclin A, cyclin E).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Melatonina , Transplante de Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 2/terapia , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Cordão Umbilical , Proteína X Associada a bcl-2
8.
Carbohydr Polym ; 288: 119404, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450656

RESUMO

In this study, we used the polysaccharide ulvan from the green macroalgae Ulva fenestrata to prepare the hydrogel for chronic diabetic wound healing. A natural polysaccharide-based hydrogel matrix (UC-DPA-Ag hydrogel) was prepared using ulvan dialdehyde, chitosan, dopamine (DPA) and silver nanoparticles (Ag NPs). Human umbilical cord mesenchymal stem cell lyophilized powder (hUC-MSCs) was loaded into the hydrogel to develop a novel chronic diabetic wound healing material (UC-DPA-Ag@hUC-MSCs). The resulting hydrogel features adequate mechanical properties, swelling capability, adhesiveness, antioxidant, antibacterial ability, and promoting cell proliferation and migration. In vivo wound healing in type II diabetic mellitus mouse wound model showed that hUC-MSCs loaded UC-DPA-Ag hydrogel could accelerate wound healing effectively. This advanced hydrogel provides a facile and effective way for diabetic chronic wound management. Furthermore, it offers a new route for the utilizing Ulva as a valuable biomaterial for the global and large-scale production of valued added biomaterials.


Assuntos
Diabetes Mellitus , Nanopartículas Metálicas , Ulva , Animais , Materiais Biocompatíveis , Hidrogéis/farmacologia , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Pós , Prata , Cicatrização
9.
Stress Biol ; 2(1): 47, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37676539

RESUMO

Current measures mainly focus on how melatonin reduces physiological heat stress in animals, but its effects on reproductive damage to male dairy goats have been neglected. This study aimed to determine the protective effect of melatonin on male reproduction during heat stress in dairy goats and to further explore its mechanisms. A natural heat stress model of Saanen dairy goats was used to assess testicular tissue damage 7 days after heat stress and to examine semen quality changes during a spermatogenic cycle. RNA-seq, Western blot, RT-qPCR, and immunofluorescence staining were used to explore the mechanism by which melatonin protects against heat stress-induced reproductive damage and to validate the results. The data suggested that melatonin significantly alleviated the heat stress-induced decrease in sperm quality, protected varicose tubule structure, reduced the levels of heat shock proteins and apoptotic proteins and protected the spermatocytes and round spermatozoa, which are mainly affected by heat stress. RNA-seq results suggest that melatonin inhibits the PI3K/AKT signaling pathway, reduces the level of p-AKT, and promotes elevated BCL-2. In addition, melatonin treatment could upregulate the gene expression of MT2 which was downregulated by heat stress and improve the change in extracellular matrix components and restore serum testosterone levels. Our results suggest that melatonin can protect against testicular and spermatogenic cell damage and improve semen quality in male dairy goats under heat stress. This study provides an important reference for subsequent studies on the molecular mechanisms of melatonin in protecting male reproductive processes under heat stress and using exogenous melatonin to prevent heat stress.

11.
Front Cell Dev Biol ; 9: 722365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722505

RESUMO

Abundant evidence proves the therapeutic effect of adipose-derived mesenchymal stem cells (ADMSCs) in the treatment of diabetes mellitus. However, the problems have not been solved that viability of ADMSCs were inconsistent and the cells quickly undergo senescence after in vitro cell culture. In addition, the therapeutic effect of ADMSCs is still not satisfactory. In this study, melatonin (MLT) was added to canine ADMSC culture medium, and the treated cells were used to treat type 2 diabetes mellitus (T2DM). Our research reveals that adding MLT to ADMSC culture medium can promote the viability of ADMSCs. This effect depends on the binding of MLT and MLT receptors, which activates the transforming growth factor ß (TGF-ß) pathway and then changes the cell cycle of ADMSCs and improves the viability of ADMSCs. Since ADMSCs were found to be used to treat T2DM by anti-inflammatory and anti-endoplasmic reticulum (ER) stress capabilities, our data demonstrate that MLT augment several effects of ADMSCs in remission hyperglycemia, insulin resistance, and liver glycogen metabolism in T2DM patients. This suggest that ADMSCs and MLT-ADMSCs is safe and vabulable for pet clinic.

12.
Data Brief ; 33: 106598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33318982

RESUMO

Here, we present the data on the biological effects of Hyptis spp. and Lycium spp. plant extracts in Caenorhabditis elegans (C. elegans) models of neurodegenerative diseases, which is related to the work presented in the article "Neurotherapeutic effect of Hyptis spp. leaf extracts in C. elegans models of tauopathy and polyglutamine disease: role of the glutathione redox cycle" [1]. This dataset was generated to define non-toxic concentrations of these plant extracts and to assess their impact on the motor phenotype and oxidative stress resistance of transgenic C. elegans models of two genetically defined neurodegenerative diseases: Machado-Joseph disease and Frontotemporal dementia with Parkinsonism associated to the chromosome 17. The impact of the plant extracts on toxicity was assessed using the food-clearance assay, absorbance being measured daily for seven days at 595 nm to quantify Escherichia coli (E. coli) strain OP50 bacteria consumption. Worm length and motor behaviour, including spontaneous and stimulated movement, were analysed using videos acquired with an Olympus SZX7 stereomicroscope with an integrated camera (Olympus SC30) and processed using the Image J® software and the Wrmtrck plugin. The resistance to oxidative stress induced by 240 µM juglone was assessed by determining the percentage of live animals after 1 hour of exposure.

13.
J Cell Mol Med ; 24(16): 9472-9477, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594644

RESUMO

The serious coronavirus disease-2019 (COVID-19) was first reported in December 2019 in Wuhan, China. COVID-19 is an infectious disease caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS-CoV-2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single-cell RNA-sequencing (scRNA-seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS-CoV-2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS-CoV-2. The expression level of ACE2 was related to the age, and the mid-aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS-CoV-2 and may enable rapid deciphering male-related reproductive disorders induced by COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Infertilidade Masculina/metabolismo , Receptores Virais/metabolismo , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Adulto , Enzima de Conversão de Angiotensina 2/genética , COVID-19/complicações , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/virologia , Masculino , Pessoa de Meia-Idade , RNA-Seq , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Análise de Célula Única
14.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17732, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974392

RESUMO

Overconsumption of alcohol leads to alcoholic liver disease (ALD). Natural compounds have been investigated previously for their hepatoprotective activities against liver injury. This study investigated the protective effect of Alhagi sparsifolia on ALD. Alcohol was administered to mice for three consecutive days; either alone or in combination with Alhagi sparsifolia extract (150, 300, 600 mg/kg). Serum aspartate aminotransferase and alanine transaminase as biomarkers of liver injury, the content of malonaldehyde, hydrogen peroxide (H2O2) and glutathione which indicated the redox status of liver and the antioxidant enzyme activity of super oxide dismutase were detected, respectively. Moreover, the expression of protein cytochrome P450 2E1 (CYP2E1) the key enzyme of alcohol metabolism, and also tested by western blot experiment. Subsequently, the mRNA levels of inflammatory factors including TNF- α and TLR4 was determined real-time PCR. Results showed that Alhagi sparsifolia significantly alleviated alcohol-induced liver injury by reducing serum ALT and AST, inhibiting MDA and H2O2 content, increasing SOD, and GSH level in the liver (P< 0.05). In addition, the Alhagi sparsifolia treatment inhibited the expression of CYP2E1 (P< 0.05). The results suggest that Alhagi sparsifolia could be a promising natural substance for ameliorating acute alcohol-induced oxidative stress and hepatic injury


Assuntos
Animais , Feminino , Ratos , Fabaceae/efeitos adversos , Hepatopatias Alcoólicas , Extratos Vegetais/uso terapêutico , Estresse Oxidativo , Citocromo P-450 CYP2E1 , Cirrose Hepática Alcoólica/tratamento farmacológico , Antioxidantes/farmacologia
15.
J Sci Food Agric ; 97(13): 4557-4561, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28337770

RESUMO

BACKGROUND: Hawthorn is a popular herb in many different traditional medicine systems, including traditional Chinese medicine, where it has long been used for the treatment of hyperglycemia. However, most of its varied biological activities remain unexplored. This study investigated the hypoglycemic effect of hawthorn extracts in type II diabetic (T2DM) rat model. A total of 54 rats were randomly divided into six groups: normal control group; type II diabetic model group (T2DM; these rats were induced by high-fat diet and streptozotocin); high, middle and low concentrations of hawthorn treatment (HTH , HTM and HTL T2DM rats were given hawthorn extract at a dose of 50, 100 and 200 mg kg-1 body weight, respectively); and positive control group (orlistat 40 mg kg-1 body weight). RESULTS: Triglyceride and total cholesterol serum levels were lower in the hawthorn extract-treated groups than in the T2DM control group (P < 0.01). Furthermore, hawthorn extracts decreased blood glucose level and increased plasma insulin release from pancreas. CONCLUSION: Positive effects of hawthorn against streptozotocin-induced T2DM were demonstrated. This study suggests that hawthorn extract represents a useful agent for the prevention or treatment of T2DM. © 2017 Society of Chemical Industry.


Assuntos
Crataegus/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Glicemia/metabolismo , Colesterol/sangue , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Masculino , Pâncreas/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...